数 (4枚のうち その1)

受 験 番 号	番
---------	---

- 次の条件によって定められる数列 $\{a_n\}$ がある。 $a_1=3,\ a_2=1,\ 3a_{n+2}-4a_{n+1}+a_n=4n+2 \quad (n=1,2,3,\cdots)$
- $(1) \quad b_n = 3a_{n+1} a_n \text{ とおく。数列 } \{b_n\} \text{ の一般項を求めよ。} \qquad (2) \quad c_n = a_{n+1} a_n 2n \text{ とおく。数列 } \{c_n\} \text{ の一般項を求めよ。}$
- (3) 数列 $\{a_n\}$ の一般項を求めよ。 (4) 数列 $\{a_n\}$ の初項から第 n 項までの和 S_n を求めよ。(解答はこのページ内におさめること)

- **2** 実数 x, y に対して, $X = 2^x \tan y$, $Y = \frac{2^x}{\cos^2 y}$ とおく。また,xy 平面上で, $0 \le x \le 1$ かつ $-\frac{\pi}{4} \le y \le \frac{\pi}{4}$ を満たす領域を D とする。
- (1) 点 (x, y) が領域 D 上を動くとき,X, Y のとりうる値の範囲をそれぞれ求めよ。
- $(2) \quad x=0 \text{ かつ } -\frac{\pi}{4} \leq y \leq \frac{\pi}{4} \text{ のとき, } \text{ 点 } (X, Y) \text{ の軌跡を求めよ。また, } x=1 \text{ かつ } -\frac{\pi}{4} \leq y \leq \frac{\pi}{4} \text{ のとき, } \text{ 点 } (X, Y) \text{ の軌跡を求めよ。} \\ (3) \quad \text{点 } (x, y) \text{ が領域 } D \text{ 上を動くとき, } \text{ 点 } (X, Y) \text{ の動く領域を } XY \text{ 平面上に図示せよ。 (解答はこのページ内におさめること)}$

数 学 (4枚のうち その2)

受 験 番 号

 $oxed{3}$ 点 O を原点とする座標平面において,直線 $m:y=rac{1}{2}x$ と放物線 $C:y=x^2-rac{3}{2}x$ によって囲まれる領域を R とする。(解答はこのページ内におさめること)

(1) 領域 R の面積 S を求めよ。

(2) t を 0 以上の実数とし,放物線 C 上の点 $\mathbf{P}\Big(t,\ t^2-\frac{3}{2}t\Big)$ から直線 m へ下ろした垂線を PH とする。このとき,PH = h,OH = ℓ として, $h,\ \ell$ をそれぞれ t の式で表せ。

(3) 領域 R を直線 m の周りに 1 回転させてできる立体の体積 V を求めよ。

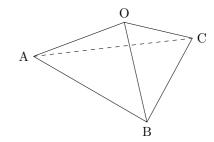
数 学 (4枚のうち その3)

受 験 番 号	番
---------	---

4	 集団 U では,	全体の $\frac{2}{15}$	が病原菌Xに	こ感染している。	病原菌 X 🤇	の感染を判定す	「る検査	方法には,	A, B, C の	3種類が	ある。症	病原菌 X に愿
染し	ているのに誤っ	って陰性と判	定する確率,	および病原菌 2	(に感染して	こいないのに誤	くって陽	生と判定す	る確率はい	ずれも,	検査方法	\pm Aでは $rac{1}{14}$
検査	方法 B では $\frac{1}{2}$	₋ ,検査方法	$C \text{ cit } \frac{1}{40} \text{ c}$	ごある。ただし,	病原菌 X	に感染している	る場合,	および感染	としていない	∖場合のレ	ヽずれに	おいても,
種類	の検査方法 A.	B. C による	判定は独立で	であるとする。	(解答はこの	ページ内にお	さめるこ	こと)				

(1) 集団 U から取り出された個体 I に対して検査を行ったところ、検査方法 A で陽性判定が得られた。このとき、個体 I が病原菌 X に感染している確率を求めよ。

(2) 集団 U から取り出された個体 J に対して検査を行ったところ,検査方法 A と検査方法 B からは陽性判定が得られたが,検査方法 C からは 陰性判定が得られた。このとき,個体 J が病原菌 X に感染している確率を求めよ。


(3) 集団 U から取り出された個体 K に対して検査を行ったところ、3 種類の検査方法 A, B, C のうち 2 種類からは陽性判定が、1 種類からは陰性判定が得られた。このとき、個体 K が病原菌 X に感染している確率、および検査方法 A による判定結果が正しかった確率をそれぞれ求めよ。

数 学 (4枚のうち その4)

受 験 番 号	番
---------	---

四面体 OABC において、OA = OB = OC = 4、AB = BC = CA = 6 とする。また、点 O から平面 ABC に下ろした垂線を OG とする。このとき、次の (a), (b) が成立することは証明なしで用いてよいものとする。

- (a) 点 G は三角形 ABC の重心である。
- (b) 以下の各問における球 $S_1,\ S_2,\ S_3$ の中心は、いずれも半直線 OG 上にある。 (解答はこのページ内におさめること)
- (1) OG の長さ h_1 を求めよ。また、4 点 O、A、B、C 全てを通る球 S_1 の半径 r_1 を求めよ。

(2) 点 G から直線 OA に下ろした垂線 GH の長さ h_2 を求めよ。また,6 つの線分 AB,BC,CA,OA,OB,OC 全てに接する球 S_2 の半径 r_2 を求めよ。

(3) 3 つの線分 AB, BC, CA 全てに接し、かつ 3 つの半直線 OA, OB, OC 全てに接する球のうち、 S_2 と異なるものを S_3 とする。球 S_3 の半径 r_3 を求めよ。